Package: glmmfields 0.1.8

glmmfields: Generalized Linear Mixed Models with Robust Random Fields for Spatiotemporal Modeling

Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.

Authors:Sean C. Anderson [aut, cre], Eric J. Ward [aut], Trustees of Columbia University [cph]

glmmfields_0.1.8.tar.gz
glmmfields_0.1.8.zip(r-4.5)glmmfields_0.1.8.zip(r-4.4)glmmfields_0.1.8.zip(r-4.3)
glmmfields_0.1.8.tgz(r-4.4-x86_64)glmmfields_0.1.8.tgz(r-4.4-arm64)glmmfields_0.1.8.tgz(r-4.3-x86_64)glmmfields_0.1.8.tgz(r-4.3-arm64)
glmmfields_0.1.8.tar.gz(r-4.5-noble)glmmfields_0.1.8.tar.gz(r-4.4-noble)
glmmfields.pdf |glmmfields.html
glmmfields/json (API)
NEWS

# Install 'glmmfields' in R:
install.packages('glmmfields', repos = c('https://seananderson.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/seananderson/glmmfields/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

ecologyextremesspatial-analysisspatiotemporal

6.73 score 50 stars 54 scripts 696 downloads 1 mentions 11 exports 76 dependencies

Last updated 1 years agofrom:ddf3b77ca8. Checks:OK: 2 NOTE: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-win-x86_64NOTEOct 26 2024
R-4.5-linux-x86_64OKOct 26 2024
R-4.4-win-x86_64NOTEOct 26 2024
R-4.4-mac-x86_64NOTEOct 26 2024
R-4.4-mac-aarch64NOTEOct 26 2024
R-4.3-win-x86_64NOTEOct 26 2024
R-4.3-mac-x86_64NOTEOct 26 2024
R-4.3-mac-aarch64NOTEOct 26 2024

Exports:glmmfieldshalf_tlognormalloonbinom2posterior_linpredposterior_predictpredictive_intervalsim_glmmfieldsstudent_ttidy

Dependencies:abindassertthatbackportsBHbroombroom.mixedcallrcheckmatecliclustercodacodetoolscolorspacecpp11descdigestdistributionaldplyrfansifarverforcatsfurrrfuturegenericsggplot2globalsgluegridExtragtableinlineisobandlabelinglatticelifecyclelistenvloomagrittrMASSMatrixmatrixStatsmgcvmunsellmvtnormnlmenumDerivparallellypillarpkgbuildpkgconfigplyrposteriorprocessxpspurrrQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstanrstantoolsscalesStanHeadersstringistringrtensorAtibbletidyrtidyselectutf8vctrsviridisLitewithr

Spatial GLMs with glmmfields

Rendered fromspatial-glms.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2023-02-13
Started: 2017-05-31

Readme and manuals

Help Manual

Help pageTopics
The 'glmmfields' package.glmmfields-package
Format data for fitting a glmmfields modelformat_data
Fit a spatiotemporal random fields GLMMglmmfields
Lognormal familylognormal
Return LOO information criterialoo loo.glmmfields
Negative binomial familynbinom2
Plot predictions from an glmmfields modelplot.glmmfields
Predict from a glmmfields modelposterior_linpred posterior_linpred.glmmfields posterior_predict posterior_predict.glmmfields predict predict.glmmfields predictive_interval predictive_interval.glmmfields
Simulate a random field with a MVT distributionsim_glmmfields
Return a vector of parametersstan_pars
Student-t and half-t priorshalf_t student_t
Tidy model outputtidy tidy.glmmfields